Abstract

Numerical simulations of sonochemical production and oriented attachment of BaTiO3 nanocrystals are performed in aqueous solution with pH 14. It is suggested that most significant effect of ultrasound is the dissolution of Ti-based gel in aqueous solution. It results in the dissolution-precipitation mechanism in the production of BaTiO3 nanoparticles, while with mechanical stirring without ultrasound it is the in situ mechanism that BaTiO3 is gradually formed on Ti-based gel. The oriented attachment of spherical BaTiO3 nanocrystals occurs by van der Waals torque (Casimir torque). Large aggregates of nanocrystals do not attach with each other as the repulsive double layer interaction is stronger for larger aggregates. For smaller spherical nanocrystals, the alignment of the crystal axes is less accurate due to more significant rotational Brownian motion of the nanocrystals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.