Abstract

In this second of three papers, we present multidimensional time-dependent numerical simulations of the propagation of protostellar jets into a uniform ambient medium which utilize a nonequilibrium treatment of optically thin radiative cooling. This paper focuses on two- and three-dimensional models of pulsed jets in which the jet inlet velocity is assumed to be intrinsically variable. These models are motivated by recent observations which suggest temporal variability may account for knots of emission detected in the jet beam in several sources. Our simulations show that large-amplitude periodic variations as required by observations produce pulses which quickly steepen into shocks

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.