Abstract

Neural Field Equations (NFE) are intended to model the synaptic interactions between neurons in a continuous neural network, called a neural field. This kind of integro-differential equations proved to be a useful tool to describe the spatiotemporal neuronal activity from a macroscopic point of view, allowing the study of a wide variety of neurobiological phenomena, such as the sensory stimuli processing. The present article aims to study the effects of additive noise in one- and two-dimensional neural fields, while taking into account finite axonal velocity and an external stimulus. A Galerkin-type method is presented, which applies Fast Fourier Transforms to optimise the computational effort required to solve these equations. The explicit Euler-Maruyama scheme is implemented to obtain the stochastic numerical solution. An open-source numerical solver written in Julia was developed to simulate the neural fields in study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.