Abstract
A parametric study of Multiple Shock Wave Boundary Layer Interactions is presented in this paper. All results were obtained using the Computational Fluid Dynamics Solver of Glasgow University. Such interactions often occur in high-speed intakes, depending on the state of the upstream boundary layer, and can adversely affect the performance of the intake. First simulations of multiple shock wave boundary layer interaction in a rectangular duct were performed and compared to the experiments followed by simulations at different Mach and Reynolds numbers and flow confinement levels. The results showed that Reynolds-stress based turbulence models are better suited than linear turbulence models in predicting the interaction. The employed Explicit Algebraic Reynolds Stress Model showed good agreement for the corner and centreline separations and resulted only in a small underprediction of the wall pressure. Flow distortion and total pressure recovery efficiency metrics were defined and evaluated for each interaction. Lower upstream Mach number and/or lower levels of flow confinement were required to achieve higher total pressure recoveries and lower flow distortion levels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.