Abstract

AbstractWe use 3D radiative MHD simulations of the upper turbulent convection layer for investigation of physical mechanisms of formation of magnetic structures on the Sun. The simulations include all essential physical processes, and are based of the LES (Large-Eddy Simulations) approach for describing the sub-grid scale turbulence. The simulation domain covers the top layer of the convection zone and the lower atmosphere. The results reveal a process of spontaneous formation of stable magnetic structures from an initially weak vertical magnetic field, uniformly distributed in the simulation domain. The process starts concentration of magnetic patches at the boundaries of granular cells, which are subsequently merged together into a stable large-scale structure by converging downdrafts below the surface. The resulting structure represents a compact concentration of strong magnetic field, reaching 6 kG in the interior. It has a cluster-like internal structurization, and is maintained by strong downdrafts extending into the deep layers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.