Abstract

The potential hazards resulting from a low-velocity impact (bird-strike, tool drop, runway debris, etc.) on aircraft structures, such as engine nacelle or a leading edge, has been a long-term concern to the aircraft industry. Certification authorities require that exposed aircraft components must be tested to prove their capability to withstand low-velocity impact without suffering critical damage. This paper describes the results from experimental and numerical simulation studies on the impact and penetration damage of a sandwich panel by a solid, round-shaped impactor. The main aim was to prove that a correct mathematical model can yield significant information for the designer to understand the mechanism involved in the low-velocity impact event, prior to conducting tests, and therefore to design an impact-resistant aircraft structure. Part of this work presented is focused on the recent progress on the materials modelling and numerical simulation of low-velocity impact response onto a composite aircraft sandwich panel. It is based on the application of explicit finite element (FE) analysis codes to study aircraft sandwich structures behaviour under low-velocity impact conditions. Good agreement was obtained between numerical and experimental results, in particular, the numerical simulation was able to predict impact damage and impact energy absorbed by the structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.