Abstract

Thermochemical processes utilizing biomass demonstrate promising prospects for the generation of syngas. In this work, a gasification process employing combination of an indigenous low-grade coal with two distinct biomass sources, namely rice husk (RH) and wood sawdust (WS), was explored. The gasification of the selected feedstock was performed using a double-staged multi-opposite burner (MOB) gasifier. A 3D computational fluid dynamics (CFD) model was employed to analyze the effect of kinetic and diffusion rates on the overall gasification performance of an entrained flow biomass gasifier. DPM was employed to track the particles’ trajectory, while the gas phase was treated as the continuous phase, and its behavior was predicted using a standard k-epsilon turbulent model. To calculate both the homogeneous and heterogeneous reaction rates, the finite rate/eddy dissipation model was implemented. The findings indicate that the char conversion efficiency exceeded 95% across all instances. Among the different reaction schemes, scheme E (which involved complete volatile and char combustion reactions) produced better results in comparison with published results, with less than 1% error. Hence, scheme E was validated and utilized for the rest of the simulated cases. The feeding rate has an inverse effect on the overall performance of the gasifier. An increase in feed rate decreases the CO and H2 composition in syngas. The maximum CO value was observed to be 57.59% at a 1.0 O/C ratio with a 0.005 kg/s feed rate, and the maximum H2 value was observed to be 16.58% in the same conditions for Lakhra coal samples. In summary, Lakhra coal exhibited better performance than other biomass samples due to its better fixed carbon and volatiles in its composition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call