Abstract

Thermal storage systems, used, e.g., for domestic heating, must be able to compensate the mismatch between supply and demand. The most efficient techniques for thermal storage are based on sorption storage processes. Usually in sorption, the adsorption process occurs in combination with a solid state adsorbent, whereas absorption takes place in a liquid/gas system. During such sorption processes the flow behavior of the carrier medium is crucial for the efficiency of a falling film absorber. In this work the hydrodynamics of the falling liquid film in two geometrical setups, namely on an inclined plane and over two horizontal parallel tubes, is studied. For the simulation the Eulerian–Eulerian model of the software ANSYS CFX and the interFoam application of the open source software OpenFOAM were used. The numerical results of the two geometries were compared with each other and also with existing data from literature to predict the performance of a sorption storage regarding the specific wetted area and the needed height for gravity driven film absorption.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.