Abstract

The objective of this work is to describe and validate a numerical axisymmetric approach for the simulation of hybrid rocket engines (HREs), based on Reynolds-averaged Navier–Stokes simulations, with sub-models for fluid–surface interaction, radiation, chemistry, and turbulence. Fuel grain consumption is considered on both radial and axial directions and both axial and swirl injection of the oxidizer are simulated. Firing tests of two different paraffin–oxygen hybrid rockets are considered. First, a numerical rebuilding of fuel grain profile, regression rate and pressure for axial-injected HREs is performed, yielding a reasonable agreement with the available experimental data. Then, the same numerical model is applied to swirl-injected HREs and employed to analyze both the flowfield and the regression rate variation with swirl intensity. A validation of the model through the rebuilding of small-scale firing tests is also performed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call