Abstract
In this work, two-dimensional numerical simulations of flow-assisted mixed convection in a vertical channel filled with high porosity metal foams have been carried out by using the commercial ANSYS FLUENT. In order to enhance heat transfer, the vertical channel is filled with aluminum metal foams of different pores per inch (PPI). Four different metal foams PPI 10, 20, 30, and 45, with porosity values varying from 0.90 to 0.95 are considered in this study. The geometry under consideration consists of metal foam attached to the aluminum plate in the vertical channel and the resulting problem becomes conjugate heat transfer. The metal foam region is considered as a homogeneous porous medium with the Darcy Extended Forchheirmer model to evaluate the flow characteristics while the local thermal non-equilibrium heat transfer model is considered for the heat transfer analysis. Initially, numerical results are compared with the experimental results available in literature and the agreement was found to be good. Parametric studies show that as the metal foam PPI increases, the pressure drop increases, while the heat transfer is seen to increase with an increase in the pore density of the metal foam.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.