Abstract

A series of numerical simulations on magnetorotational core-collapse supernovae are carried out. Dipole-like configurations which are offset northward are assumed for the initially strong magnetic fields together with rapid differential rotations. Aims of our study are to investigate effects of the offset magnetic field on magnetar kicks and on supernova dynamics. Note that we study a regime where the proto-neutron star formed after collapse has a large magnetic field strength approaching that of a ``magnetar'', a highly magnetized slowly rotating neutron star. As a result, equatorially-asymmetric explosions occur with a formation of the bipolar jets. Resultant magnetar's kick velocities are $\sim 300-1000$ km s$^{-1}$. We find that the acceleration is mainly due to the magnetic pressure while the somewhat weaker magnetic tension works toward the opposite direction, which is due to stronger magnetic field in the northern hemisphere. Noted that observations of magnetar's proper motions are very scarce, our results supply a prediction for future observations. Namely, magnetars possibly have large kick velocities, several hundred km s$^{-1}$, as ordinary neutron stars do, and in an extreme case they could have those up to 1000 km s$^{-1}$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.