Abstract
Increasing miniaturization has led a significant increase in the current densities seen in flip-chip solder joints. This has made the study of failure in solder joints by void propagation due to electromigration and stress migration more important. In this study, we develop a phase field model for the motion of voids through a flip chip solder interconnect. We derive equations of motion for the void accounting for energetic contributions from the active factors of surface energy, stress and electric potential, taking into account both surface diffusion and transfer of the material through the bulk of the material. We describe the implementation of this model using finite elements, coupled with a commercial finite element solver to solve for the fields driving the void motion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.