Abstract

During the hydrate exploitation in a shallow marine layer by the mechanical crushing, the hydrate particle decomposition in a wellbore is one of the most concerning problems. In this research, a hydrate dynamic decomposition model coupling intrinsic kinetics with mass and heat transfer rates was established. The model can simulate the hydrate particle decomposition process in flowing water. By comparison, the model calculated results are in good agreement with the measured values. The numerical simulation results show that hydrate decomposition is a non-isothermal process. In the early stage, the hydrate decomposition rate mainly depends on the heat transfer rate. However, it is mainly affected by the hydrate intrinsic kinetics in the late stage. In contrast, the mass transfer rate has little effect on it during the whole decomposition process. By analyzing the influence of sensitivity parameters, it can be found that the activation energy has an important impact on the hydrate decomposition rate, and the hydrate decomposition rate constant decreases significantly at E/R > 9000 K. Increasing the water flowing rate is beneficial to the dissolution of hydrates. System temperature and pressure are two significant factors that directly affect the hydrate decomposition rate, and increasing the temperature or reducing the pressure can effectively increase the hydrate decomposition rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.