Abstract

Finite element simulations of coupled thermal and moisture fields in wood during kiln drying were observed with a focus on non-isothermal moisture transfer in three dimensional orthotropic models of wood with an initial moisture content below the fiber saturation point. Four different unsteady-state numerical models of the drying process were compared with the assumptions given by standards commonly used in wood kiln-drying processes. The first model describes linear simulation, and the other three models present nonlinear simulation using variable material coefficients dependent on temperature and moisture content, differing in settings of the Soret effect (thermodiffusion). A linear model was useful for predicting only the average moisture content during drying. Moreover, the nonlinear simulations were useful for computing the moisture content distribution. High differences (2.31% of moisture content) were found between the flow of moisture predicted by numerical models and standard requirements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call