Abstract

The near field dynamics of buoyant reactive jets with adjacent sidewalls is investigated by time-dependent three-dimensional direct simulations. The physical problem is a fuel jet issuing vertically into an oxidant ambient environment in a corner configuration with sidewall boundaries. Simulation results are presented for two cases with different jet nozzle geometries: a corner-round reactive jet and a corner-square reactive jet with the same cross-sectional area on the nozzle plane. Buoyancy-induced large vortical structures evolve spatially in the flow field and transition to turbulence occurs downstream. Calculation of the mean flow properties shows that entrain ment of the corner-round jet is stronger than that of the corner-square jet due to the stronger vortex deformation in the corner-round case.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.