Abstract

Air entrainment upon impact of a jet of liquid is a phenomenon present in wide variety of applications. We performed a series of two-dimensional simulations consisting in three different conditions of jet impingement and compared the results to experimental data. This study was first dedicated to the establishment of the numerical configuration and the setting of the injection parameters of the jet. We studied the dynamics of air entrainment by the jets impacting on the surface of the water in a tank, from the creation of the aerated cavities to the motion of the bubble plumes resulting from their deterioration of the cavities. The results concerned time-dependent and transient phenomena. To validate the simulations, we made several comparisons with experimental data, considering three angles of jet impact. Finally, we compared two numerical models for the free-surface description, using the most prevalent method in the literature and an original free-surface tracking method recently developed in our numerical tool. We showed that the formation of air cavities was similar for each condition and each numerical model, in agreement with the experimental results. Moreover, it was observed that the air entrainment had a different behavior depending on the conditions of jet impact.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.