Abstract

We have performed numerical simulations of the flow of hot glycerine as it displaces colder, more viscous glycerine in a radial Hele–Shaw cell. We find that fingering occurs for sufficiently high inlet velocities and viscosity ratios. The wavelength of the instability is independent of inlet velocity and viscosity ratio, but depends weakly on cell width. The growth rate of the fingers is found to increase with inlet velocity and decrease with the cell width. We compare our results with those from experiments.PACS No.: 47.54.–r

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call