Abstract

The dynamic processes by which an electrostatic plasma lens with a wide-aperture ion beam and electrons produced from the secondary ion-electron emission relaxes to a steady state is investigated for the first time by the particle-in-cell method. The parameters of a two-dimensional mathematical model were chosen to correspond to those of actual plasma lenses used in experimental studies on the focusing of high-current heavy-ion beams at the Institute of Physics of the National Academy of Sciences of Ukraine (Kiev, Ukraine) and the Lawrence Berkeley National Laboratory (Berkeley, USA). It is revealed that the ion background plays a fundamental role in the formation of a high potential relief in the cross section of a plasma lens. It is established that, in the volume of the plasma lens, a stratified electron structure appears that is governed by the nonuniform distribution of the external potential over the fixing electrodes and the insulating magnetic field. The stratification is very pronounced because of the finite sizes of the cylindrical fixing electrodes of the lens. It is shown that the presence of such a structure limits the maximum compression ratio for an ion beam to values that agree with those observed experimentally.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.