Abstract
A flow in which a thin film falls due to gravity on the inner surface of a vertical, rotating cylinder is investigated. This is performed using two-dimensional (2D) and 3D direct numerical simulations, with a volume-of-fluid approach to treat the interface. The problem is parameterized by the Reynolds, Froude, Weber, and Ekman numbers. The variation of the Ekman number (Ek), defined to be proportional to the rotational speed of the cylinder, has a strong effect on the flow characteristics. Simulations are conducted over a wide range of Ek values (0≤Ek≤484) in order to provide detailed insight into how this parameter influences the flow. Our results indicate that increasing Ek, which leads to a rise in the magnitude of centrifugal forces, produces a stabilizing effect, suppressing wave formation. Key flow features, such as the transition from a 2D to a more complex 3D wave regime, are influenced significantly by this stabilization and are investigated in detail. Furthermore, the imposed rotation results in distinct flow characteristics such as the development of angled waves, which arise due to the combination of gravitationally and centrifugally driven motion in the axial and azimuthal directions, respectively. We also use a weighted residuals integral boundary layer method to determine a boundary in the space of Reynolds and Ekman numbers that represents a threshold beyond which waves have recirculation regions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.