Abstract

Numerical simulations have been carried out on a model of the right passageway of an anonymous, adult male's nasal cavity, constructed from magnetic resonance imagery (MRI) scans. Steady, laminar, inspiratory flow was assumed to simulate inhalation. Analysis shows smoothly varying streamlines with a peak in velocity magnitude occurring in the nasal valves and a peak in vorticity magnitude immediately posterior. Dilute, uniform concentrations of inertial (1 μm dae 10 μm) particles were released at the nostril and tracked via a Lagrangian tracking algorithm. Deposition efficiency is shown to increase with particle size and flow rate. Preferential deposition is seen in the anterior third of the nasal cavity for large Stokes number particles. An empirical expression for particle deposition is proposed that incorporates particle size, flow rate, and nose anatomy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.