Abstract
The measurement of flow rate is important in many industrial applications including rocket propellant stages. The orifice flow meter has the advantages of compact size and weight. However, the conventional single-hole orifice flow meter suffers from higher pressure drop due to lower discharge coefficient (Cd). This can be overcome by the use of multi-hole orifice flow meter. Flow characteristics of multi-hole orifice flow meters are determined both numerically and experimentally over a wide range of Reynolds numbers. Computational fluid dynamics (CFD) is used to simulate the flow in the single- and multi-hole orifice flow meters. Experiments are carried out to validate the CFD predictions. The discharge coefficients for the different orifice configurations are determined from the CFD simulations. It is observed that the pressure loss in the multi-hole orifice flow meter is significantly lower than that of single-hole orifice flow meter of identical flow area due to the early reattachment of flow in the case of the multi-hole orifice meter. The influence of different geometrical and flow parameters on discharge coefficient is also determined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.