Abstract

Metal additive manufacturing (AM) processes have unique challenges that need to be addressed before metal-based AM can become a reality, and in particular, an understanding of the thermal cycling and heat transfer characteristics. In this research, variable bead overlap conditions are simulated and compared to a set of experimental data configurations. Variable bead overlap conditions occur at boundary-fill interfaces and may be a tool path solution for regions that have voids. A comprehensive understanding of the consequences related to this scenario needs to be determined as the heat transfer influences the resultant build geometry, and the mechanical and physical characteristics. A three-dimensional (3D) transient uncoupled thermo-elastic–plastic model is generated using ANSYS to simulate the thermal process, hardness, and distortion for selected single- and multi-track laser cladding models. The melt pool geometry, distortion, and hardness results are presented, including a detailed time temperature and hardness analysis. Simulation models provide insight into regions that cannot be readily measured, but the processing time is long. It is recommended to explore scaling and trend analysis approaches or combine simulation and machine learning strategies to reduce the processing time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call