Abstract

Present study is on partial/complete coalescence dynamics of a droplet (surrounded by air) over a horizontal pool of the same liquid. Experimental and numerical studies are presented for both isopropanol and glycerol droplet of a constant diameter. Numerical study is presented in more detail for the isopropanol droplet to study the effect of diameter (D=0.035-6.7 mm) and surface tension coefficient (gamma =2-200 mN/m) on the coalescence dynamics. For partial coalescence of an isopropanol droplet and complete coalescence of a glycerol droplet, excellent agreement is demonstrated between our numerically and experimentally obtained interface dynamics; and a qualitative discussion on the mechanism of the partial and complete coalescence is presented. Three regimes of partial coalescence − viscous, inertio-capillary and gravity − proposed in the literature for a liquid-liquid system are presented here for the present liquid-air system while studying the effect of diameter of the isopropanol droplet. Probably for the first time in the literature, our numerical study presents a flow and vorticity dynamics based quantitativeevidence of the coalescence-mechanism, analogy with a freely vibrating Spring-Mass-Damper System, the gravity regime for a liquid-gas system, and the effect of surface tension coefficient gamma based coalescence dynamics study. The associated novel gamma based droplet coalescence regime map presents a critical Ohnesorge number Oh_{c} and critical Bond number Bo_{c} for a transition from partial to full coalescence; and such critical values are also presented for the transition under effect of the droplet diameter. The critical values based transition boundaries, obtained separately for the varying D and varying gamma, are demonstrated to be in excellent agreement with a correlation reported in the literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.