Abstract

Carbon dioxide (CO 2 ), the main gas emitted from fossil burning, is the primary contributor to global warming. Circulating fluidized bed reactor (CFBR) is proved as an energy-efficient method for post-combustion CO 2 capture. The numerical simulation by computational fluid dynamics (CFD) is believed as a promising tool to study CO 2 adsorption process in CFBR. Although three-dimensional (3D) simulations were proved to have better predicting performance with the experimental results, two-dimensional (2D) simulations have been widely reported for qualitative and quantitative studies on gas–solid behavior in CFBR for its higher computational efficiency recently. However, the discrepancies between 2D and 3D simulations have rarely been evaluated by detailed study. Considering that the differences between the 2D and 3D simulations will vary substantially with the changes of independent operating conditions, it is beneficial to lower computational costs to clarify the effects of dimensionality on the numerical CO 2 adsorption runs under various operating conditions. In this work, the comparative analysis for CO 2 adsorption in 2D and 3D simulations was conducted to enlighten the effects of dimensionality on the hydrodynamics and reaction behaviors, in which the separation rate, species distribution and hydrodynamic characteristics were comparatively studied for both model frames. With both accuracy and computational costs considered, the viable suggestions were provided in selecting appropriate model frame for the studies on optimization of operating conditions, which directly affect the capture and energy efficiencies of cyclic CO 2 capture process in CFBR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.