Abstract

Numerical simulations of a 600 t/day waste incinerator was carried out using the fluid dynamic incinerator code and Fluent to evaluate the effect of biomass blending on furnace temperature, pollutant generation, and selective noncatalytic-reduction (SNCR) denitrification when treating low calorific-value waste. The results show that as the biomass blending ratio increases, the water content gradually decreases, the calorific value increases, and the maximum temperature of the incinerator gradually increases from 1227 to 1408 K, while the content of exported NOx increases from 579 to 793 mg/Nm3; during the combustion of low-quality waste, the residence time of the flue gas in the high-temperature region (above 1123 K) is 1.62 s. When the biomass blending ratio exceeds 20%, the residence time of the flue gas in the high-temperature region is more than 2 s, which can effectively curb the generation of dioxin. When the biomass blending ratio is 20%, and the normalized stoichiometric ratio (2nurea/nNO) of urea injected into the SNCR is 1.1, the NOx concentration at the outlet is 230.08 mg/Nm3, which satisfies the NOx emission standard of less than 250 mg/Nm3.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call