Abstract

Plasma nanostructures are of particular significance for serving as a substrate for spectroscopic detection and identification of individual molecules. By combining the excitation wavelength of the molecule with the resonance wavelength of the nanostructure, the sensitive single-molecule Raman detection can be achieved. A high and stable plasma substrate for coherent anti-Stokes Raman scattering(CARS) is very useful for developing the surface-enhanced coherent anti-Stokes Raman scattering (SECARS). In the plasma nanostructures, the strong coupling of plasmonic nanoparticles with an inter-particle gap smaller than the diameter of the individual nanoparticles results in the hybridization of the optical properties of these individual nanoparticles. There are also the charge transfer plasmons(CTP) appearing in conductive bridging nanoparticles. Their unique properties make linked nanosystems a suitable candidate for building artificial molecules, nanomotors, sensors, and other optoelectronic devices. In this work, we, starting from reality, theoretically design a new linked nanosystem SECARS substrate where Fano resonance can be generated by the plasmon hybridization (PH) model resonance and the charge transfer plasmon resonance. The introduction of charge transfer plasma improves the tunability of structural resonance. By adjusting the conductivity of the conductive junction, the wavelength of the charge transfer plasma resonance can be easily adjusted to change the wavelength position of the Fano resonance. The data obtained by numerical simulation of the Raman mode at 1557 cm<sup>–1</sup> of L-tryptophan when a 1064 nm light source is used as the pump light show that this spatially symmetrical structure can generate multiple high-enhancement hot spots that do not depend on the polarization direction of the incident light. Ordinary CARS signal can generally be enhanced by 10<sup>12</sup>, and its maximum can reach 10<sup>14</sup>. Due to the ultrastrong field enhancement and insensitive-to-polarization, this method of using charge transfer plasma to design a substrate can be used in the practical substrate of SECARS and provide new ideas for designing other nonlinear optical processes such as four wave mixing and stimulated Raman scattering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.