Abstract
In order to grasp the information of wind field and disturbance in the airport in real time, and to ensure the safety of flight, a method of detecting wind field disturbance using coherent laser is presented. A model to solve the vector velocity of the wind field disturbance is established in this paper. Based on the radial velocity simulation of coherent laser echo signal, a reliable and effective radial velocity data is provided for inversing the vector velocity of the wind field disturbance. Actually, the radial wind velocity appears relatively large fluctuations due to the distribution inhomogeneity of aerosol particles and sensor noise in actual measurement. Therefore, the purpose of adding random noise into the above-mentioned inversion of the radial wind velocity is to simulate the measured radial wind velocity data. In the case of noise interference, the damping least square algorithm is proposed to solve the numerical optimal vector velocity of the wind field disturbance to verify the solving model. In addition, the vector velocity of the wind field disturbance is compared and analyzed under different scanning azimuth interval. Through the simulation results, it shows that the mean square error(MSE) of inversion result is smaller with the decrease of scanning azimuth interval. When the scanning azimuth interval is less than 60°, the mean squared error of the vector velocity of the wind field disturbance is less than 1.14m/s, horizontal direction disturbance quantity is less than 4°, which lays a good theoretical basis for the follow-up field tests.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.