Abstract

Lead-cooled fast reactor (LFR) adopts the liquid metal lead as the coolant and is beneficial to the fuel sustainability and high safety. LFR is suffering from the serious thermal stratification due to the pool type design and high operation temperature, leading to the threatening thermal stress on the structure. In this paper, the three-dimensional CFD model of ELSY lead pool is established and the thermal stratification phenomena under the forced and natural circulations are investigated. The results show that under steady-state conditions, ELSY has temperature stratification along the wall in the upper lead pool where the steam generator is located, and a high temperature concentration zone and a speed stagnant zone in the lower plenum. Under natural circulation conditions, when the water decay heat removal system (W-DHR), isolation condenser (IC) and reactor vessel air cooling system (RVACS) are put into operations, there is also obvious temperature stratification in the steam generator area. This paper puts forward some corresponding optimization suggestions on the problems in the simulation. The above results can provide an appropriate and effective reference for the design of ELSY in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.