Abstract

The devices in coal chemical industries operate with harsh conditions, involving the high temperature, high pressure, and high concentration of pulverized coal particles. Therefore, leakages or perforations of pipelines occur frequently. In this paper, the numerical prediction on the erosion wear of a coal slurry transmission pipeline was conducted. The dense discrete phase model-kinetic theory of granular flow (DDPM-KTGF) and a modified erosion model were adopted to calculate the particle trajectories and erosion rates. In the numerical calculation, the erosion rate curve of 1Cr9Mo steel obtained in the experiments is incorporated into the erosion model. The results showed that the regions with high erosion risks predicted by the modified erosion model were in agreement with the experimental results. Then, the calculation method is validated. It is also found that the particle movements involve partial agglomeration under the drag of centrifugal force and the secondary flow, when they pass through the elbow. Larger particles are prone to impact on the back of the bend, which has more pronounced effect on the erosion wear. The positions of the maximum erosion rate on all the elbows were discussed, which provides a reference for the inspection on the wall thickness of pipeline.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call