Abstract

To investigate the motion characteristics and the law of identical property for particles obtained under segregation to uniform distribution conditions in forced agitation mixing, the mixing process of the same sized ellipsoidal particles at different rotating speeds in a U-tank is simulated using three-dimensional discrete element method. Macroscopic mixing law and partial mixing characteristics in particle mixing process are analysed in the view of single particle random motion trajectory and motion vector diagram of macroscopic particle flow. And the mathematical relation between mixability and revolutions of agitating blades is described quantitatively. Results show that convective mixing and four partial mixing characteristics control the mixing homogeneity process of identical property of segregation particles in forced agitation mixing. Mixability of segregation particles is independent of rotating speed of the agitating shaft, but has a direct correlation with revolutions. The relation between mixability and revolutions agrees with the exponential growth model. Research results can provide the basis and reference for equipment improvement and operating control of bulk material in the industry of the augmenting of mix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.