Abstract

The introduction of residual stresses using laser shock peening (LSP) is an effective means of improving the mechanical properties of ceramics. Numerical simulations offer greater convenience and efficiency than in-lab experiments when testing the effects of different processing techniques on residual stress distribution. In this work, a B4C-TiB2 ceramic model based on the extended Drucker-Prager model was established to investigate the effects of laser power density, the number of impacts and laser spot overlapping rate on the residual stress distribution, and the reliability of the simulation method was verified by experimental data. The following results are obtained: increasing the laser power density and the number of impacts can increase the surface residual compressive stress and reduce the depth of the residual compressive stress; the presence of multiple impacts will significantly reduce the depth of the residual compressive stress layer; with the increase in the laser spot overlapping rate, the compressive residual stress in the processed area gradually increases and is more uniformly distributed; the best processing effect can be achieved by using a spot overlapping rate of 50%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.