Abstract

In this research article, the performance of a conical spiral heat exchanger with rectangular cross sections is numerically investigated by using two different nanofluids, aluminium oxide/water (Al2O3/water) and copper oxide/water (CuO/water) nanofluid. For this purpose, the effects of nanofluid concentration on the secondary flow, pressure drop, heat transfer and figure of merit (FOM) (the ratio of total heat transfer to the required fluid for pumping) are investigated. On the structured grid, the continuity, momentum, and energy equations are solved by employing a finite volume method. Results indicate that by enhancing the concentration of a nanofluid, the formed secondary flow gains more power. Based on the obtained results, the pressure drop increases with enhancing the nanofluid concentration along the tube. The heat transfer rate is slightly increased by adding nanoparticles to the base water fluid in very low concentrations, but with increasing the concentration of nanofluids, the heat transfer rate reduces. Moreover, FOM decreases with increasing nanofluid concentration. This variation is higher for copper oxide compared to alumina nanofluids at lower concentrations, while it is higher for alumina nanofluid at higher concentrations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.