Abstract

ABSTRACT Tar-rich coal holds the potential to substitute the supply of oil-gas resources. The in-situ pyrolysis contributes to efficient resource utilization and can potentially achieve net-zero CO2 emissions. However, it is challenging to efficiently separate oil-gas resources, which are predominated by tar, from multiphase products of in-situ pyrolysis of tar-rich coal. Additionally, the difference in fluid properties yields significant influences on separation performance, while the understanding of the separation characteristics of high-viscosity fluid remains insufficient. In this study, the separation process of pyrolysis products from tar-rich coal was investigated using the computational fluid dynamics simulation approach. The flow field, pressure drop, separation efficiency and distribution characteristics were analyzed. The simulation results indicate that the volute cyclone separator exhibits commendable separation efficiency, exceeding 98%. Meanwhile, in handling tars containing a high concentration of light oil, the separator demonstrates remarkable adaptability. The separation efficiency of solid particles decreases from 89% to 83% when the system contains a high content of pitch. The particle diameter exerts great influence on the flow field. The separation efficiencies are 99% and 0.37%, respectively, when the particle sizes are selected as 0.1 mm and 0.001 mm. In the scope of this study, the optimal working conditions of the cyclone separator were determined, which provides data support for improving the separation efficiency and recovery rate of the oil-gas resources.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call