Abstract
Numerical simulation on flow of ice slurry in horizontal straight tubes was conducted in this paper to improve its transportation characteristics and application. This paper determined the influence of the diameter and length of tubes, the ice packing factors (IPF) and the flow velocity of ice slurry on pressure loss by using numerical simulation, based on two-phase flow and the granular dynamic theory. Furthermore, it was found that the deviation between the simulation results and experimental data could be reduced from 20% to 5% by adjusting the viscosity which was reflected by velocity. This confirmed the reliability of the simulation model. Thus, two mathematical correlations between viscosity and flow velocity were developed eventually. It could also be concluded that future rheological model of ice slurry should be considered in three sections clarified by the flow velocity, which determined the fundamental difference from single-phase fluid.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.