Abstract

Based on the volume of fluid (VOF) method, a numerical model of bubbles splitting in a microfluidic device with T-junction is developed and solved numerically. Various flow patterns are distinguished and the effects of bubble length, capillary number, and diameter ratio between the mother channel and branch are discussed. The break-up mechanism is explored in particular. The results indicate that the behaviors of the bubbles can be classified into two categories: break-up and non-break. Under the condition of slug flowing, the branches are obstructed by the bubbles that the pressure difference drives the bubbles into break-up state, while the bubbles that retain non-break state flow into an arbitrary branch under bubbling flow condition. The break-up of the short bubbles only occurs when the viscous force from the continuous phase overcomes the interfacial tension. The behavior of the bubbles transits from non-break to break-up with the increase of capillary number. In addition, the increasing of the diameter ratio is beneficial to the symmetrical break-up of the bubbles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.