Abstract
Since a high temperature superconducting (HTS) wire such as Bi-2223 (Bi2Sr2Ca2Cu3O) and REBCO((RE)Ba2Cu3O) tapes indicates good superconducting characteristics under high magnetic field, ultra-high field magnets wound HTS wire are applicable to a nuclear magnetic resonance (NMR) spectrometer and magnetic resonance imaging (MRI). The large and long-time-constant screening current is induced in the HTS wire, which is the tape shape and not twisted, and the magnetic field generated by screening current deteriorated the field quality such as temporal stability and spatial homogeneity. Because NMR and MRI requires highly accurate field on temporal stability and spatial homogeneity, it is necessary to investigate the influence of the screening current-induced field. In REBCO tape, the screening current can be reduced by dividing the superconductor layer. However, filaments are electrically connected because they are covered with copper due to strength and thermal stability. On the other hand, a Bi-2223 is wire which multiple superconducting filaments are covered with silver or a silver alloy, therefore, the screening current is smaller than that in a REBCO tape. However, in a Bi-2223 tape, a coupling current flows because of electrical bridge between the filaments. In this study, we discuss coupling current distribution from numerical simulation on the multifilamentary HTS coil which is given the local electrical contact between filaments. The screening-current field decreases with increasing the interval distance. In addition, the current distribution is different depending on the interval distance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.