Abstract

According to the World Health Organization (WHO), approximately 1.3 billion people experience visual impairments. Daily exposure to various levels of luminous beams directly impacts the front layer of the visible structure, leading to corneal injuries. To comprehensively understand this, we reconstructed a three-dimensional model utilizing the PENTACAM® system. This enabled us to accurately determine the 50th percentile dimensions of the fibrous layer of the eyeball. Using the Ogden mathematical model, we developed a 3D cornea model, treating it as a soft tissue with predictable behavior, considering mechanical properties such as viscoelasticity, anisotropy, and nonlinearity. Employing the Finite Element Method (FEM), we analyzed five distinct test scenarios to explore the structural response of the cornea. Luminous beam properties were instrumental in establishing varying mechanical loads, leading to structural deformations on the corneal surface. Our findings reveal that when a smartphone’s screen emits light at a frequency of 651.72 THz from 200 mm, displacements in the corneal layer can reach up to 9.07 µm. The total load, computed by the number of photons, amounts to 7172.637 Pa.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.