Abstract

The numerical simulations have been performed to clarify the effects of the turbulence in the liquid on the deformation of liquid jet surface issued into the air flow. The turbulences in the liquid jet were simulated by the Rankin vortices, and the liquid jet surface was tracked numerically by the VOF (Volume Of Fluid) method. By the numerical simulations, the onset of the protrusions on the liquid jet surface is caused by the vortices in the liquid, and the surrounding air flow plays the important role for the amplification of the protrusions. The amplification rate of the trough displacement is proportinal to the air-to-liquid velocity ratio. At large imposed vortex intensity, the trough displacement increases with the vortex intensity. On the other hand, at small imposed vortex intensity, the amplification of the trough displacement is affected by other factors except vortex intensity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.