Abstract

A numerical simulation method was used to analyze the solidification process of Zr-based bulk metallic glass (BMG) during the horizontal continuous casting (HCC) process. The large-scale general-purpose finite element analysis software ANSYS was adopted to develop a temperature field model. The variation of temperature field in the specific area at different time was studied. Its accuracy was verified by the experimental results of Zr48Cu36Ag8Al8 bulk metallic glass continuous casting solidification process. The effects of casting parameters include intermittent casting procedure (drawing and stopping), casting speed, pouring temperature and cooling rate. The results show that the optimum casting speed range is 1-2 mm/s, pouring temperature is 1223 K and cooling rate of 10 mm rod casting is 5 L/min respectively. A fully Zr-based bulk metallic glass whose diameter is 10 mm and length has no limitation has been successfully fabricated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.