Abstract

The adhesion/cohesion of plasma-sprayed coatings depends strongly on the flattening and solidification of individual splat, taking place in a few microseconds. Such a short time makes it difficult to thoroughly study the splat formation. A three-dimensional numerical model incorporating the substrate melting and solidification was developed using CFD method to simulate the flattening and cooling of zirconia splat involving the influence of interface thermal contact resistance. On smooth substrate where the thermal contact resistance is zero, the splat has a cooling rate of 1.7 × 108 K/s, resulting in substrate melting, and a disk-like splat is formed with a spread factor of approximately 3.5. While on substrate with thermal contact resistance of 10−7 m2 K/W, corresponding cooling rate is 3.17 × 108 K/s and a central splat surrounded by satellite droplets is formed due to the rapid solidification of the splat edges.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.