Abstract

A technique for numerical simulation of the processes of forming X-ray radiography images of complex multicomponent objects with allowance for the penetrating-radiation absorption and scattering processes is proposed. The technique proposed is based on an efficient description of complex 3D objects with piecewise-homogeneous structures and uses precisely specified shells separating homogeneous components of an object. Being combined with a developed version of the Monte Carlo method, this approach yields an efficient computational apparatus for analyzing the regularities of the formation of radiographic images of objects’ internal structures. This apparatus is intended for state-of-the-art multiprocessor computing systems. Having been obtained via the technique developed, the results of the numerical analysis of the effect of different mechanisms of interaction between photons and matter (including coherent and incoherent scattering with allowance for bonds of electrons in atoms) on the formed radiographic image of the object’s internal structure are discussed. The advantage of the described technique over the known MCNP program complex is shown.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call