Abstract

The Reynolds-averaged Navier–Stokes (RANS) method coupling with the actuator disc model (ADM) is considered as a promising numerical simulation technology of wind turbine wake, and it is widely utilised in the aerodynamics of wind turbines and optimal layout of wind farms. The k − e turbulence model is widely adopted, among the RANS-based turbulence models. However, the k − e turbulence model easily overestimates the turbulence viscosity in the wake, which results in fast recovery of wake velocity and failure in wake forecasting. In addition, ADM with the oversimplified geometrical structure ignores the effects of nacelle and tower on the wind turbine wake, which further lowers the accuracy of wake simulation. Therefore, the numerical simulation of wind turbine wake based on the extended k − e turbulence model of EI Kasmi coupling with ADM considering nacelle and tower is proposed. Comparing the results of Marchwood Engineering Laboratories (MEL) ABL wind tunnel measurements and TNO wind tunnel experiments, it has been found that the proposed model improves the simulation effect for the near wake and has a certain contribution to the wake prediction accuracy overall.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.