Abstract

Abstract Natural ventilation is the main passive strategy for thermal comfort inside buildings and renewal of the air, making it healthier. In recent decades, Computational Fluid Dynamics has proven to be an efficient tool for estimating natural ventilation. The objective of this work was to study the ventilation from the action of the wind inside models of low-rise buildings to observe how geometric conditions influence the topology of the flow and volume flow ratesusing the open source software OpenFOAM. In order to verify and validate the software, a 3D building model with openings on opposite faces was used. Subsequently, arrays of three buildings were studied albeit considering the problem as two-dimensional. In the arrangements, three different terrain slopes and four distance values between buildings were tested. The results show that ventilation in the second and third buildings was gradually recovered with an increase in separation and terrain slope, although the values obtained in the first building were not reached.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.