Abstract

In recent years, an increasing number of projects have been developed in complex mountainous areas. The wind environment in mountainous areas, extremely complex due to the undulating terrain and diverse landscapes, is a key factor threatening the structural safety of buildings and their appurtenances in mountainous areas. Therefore, it is important to study the wind environment in complex terrain to clarify the wind resistance of structures in mountainous areas. Computational fluid dynamics (CFD) approaches are commonly used to examine wind fields in complex terrain; however, due to the limited range of terrain considered, direct modeling using terrain elevation data can result in truncated elevation differences, affecting the accuracy of numerical simulations. To address the problem of truncated elevation differences at terrain boundaries, the parameters of the wind tunnel contraction curve are optimized regarding the wind tunnel contraction section design principle. Moreover, several transition curves are analyzed and evaluated by numerical simulation methods, and a transition curve applicable to the terrain boundary transition form is proposed. The proposed terrain transition curves are applied to model the terrain of complex mountainous ski resort areas to be used in CFD numerical simulations. Furthermore, the accuracy of the numerical simulation is verified through a comparison with the field-measured data. Results indicate that the proposed method can accurately and effectively reflect the wind environment characteristics of a ski resort area. The proposed terrain transition curve provides a theoretical basis and case support for designing the terrain model boundary transition section, which can be used as a reference for wind tunnel and numerical simulation studies in complex mountainous areas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call