Abstract

Numerical study of the slip effects and radiative heat transfer on a steady state fully developed Williamson flow of an incompressible Newtonian fluid; between parallel vertical walls of a microchannel with isothermal walls in a porous medium is performed. The slip effects are considered at both boundary conditions. Radiative highly absorbing medium is modeled by the Rosseland approximation. The non-dimensional governing Navier–Stokes and energy coupled partial differential equations formed a boundary problem are solved numerically using the fourth order Runge–Kutta algorithm by means of a shooting method. Numerical outcomes for the skin friction coefficient, the rate of heat transfer represented by the local Nusselt number were presented even as the velocity and temperature profiles illustrated graphically and analyzed. The effects of the temperature number, Grashof number, thermal radiation parameter, Reynolds number, velocity slip length, Darcy number, and temperature jump, on the flow field and temperature field and their effects on the boundaries are presented and discussed.

Highlights

  • Combined natural and forced convection in channels occurs in many applications [1]

  • Thermal radiative emission from a hot surface to a cold surface plays an important role in many uses, including energy conversion [6], with radiation effects and viscous heating in a channel partially filled by a porous material [7], viscous heating in a porous channel [8], microchannels [9], heat exchangers with vertical hexagonal rod bundle geometries [10], buoyancy-driven vortical flow [11], biofidelity corridors [12], fluid flow control [13,14], in various boundary conditions [15], and pressure dependent viscosity flows [16]

  • Mixed convection viscoelastic slip flow through a porous medium in a vertical porous channel with thermal radiation flow [17] is found in industrial processes and has acquired substantial importance due to its Entropy 2016, 18, 147; doi:10.3390/e18040147

Read more

Summary

Introduction

Combined natural (free) and forced convection in channels occurs in many applications [1]and geometries such flow between parallel vertical walls [2], including flow reversal [3], inclined parallel plates [4], and vertical channels [5], etc. Thermal radiative emission from a hot surface to a cold surface plays an important role in many uses, including energy conversion [6], with radiation effects and viscous heating in a channel partially filled by a porous material [7], viscous heating in a porous channel [8], microchannels [9], heat exchangers with vertical hexagonal rod bundle geometries [10], buoyancy-driven vortical flow [11], biofidelity corridors [12], fluid flow control [13,14], in various boundary conditions [15], and pressure dependent viscosity flows [16]. Bocquet and Barrat [30] explained the probability of temperature slip simultaneously with velocity discontinuity at boundary conditions. The slip relations should be applied at the fluid solid boundaries in microchannels in other textbooks [31]

Objectives
Methods
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.