Abstract

The mechanical properties of a weldment structure are influenced by the level of residual stress generated during fusion welding process. The experimental determination of residual stress is cumbersome and not free from measurement errors. A sophisticated numerical model is relatively easy approach to predict residual stress due to the advancement of high performance computational technology. However, the integration of all process physics to make a sophisticated numerical model is ever demanding. The present work is motivated in that direction and involves a finite element based numerical model for simulation of welding-induced residual stresses. A thermal model using adaptive volumetric heat source has been used to estimate temperature distribution. Subsequently, the thermal history is used to perform stress analysis for butt welded plates using three different fusion welding processes. The material behaviour is assumed as elasto-plastic in nature. The calculated results and their trend have been validated with experimental results available in open literature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call