Abstract

The presented mathematical model enables calculation of the wave surface profile, as well as the fields of velocity and temperature, in falling wavy liquid films. Numerical simulation of wave formation and heat transfer intensity was performed for falling films of liquid nitrogen. Different activation functions for input perturbations were checked for films with different parameters. The dependencies of the time till boiling onset and total local evaporation time on the heat flux density were calculated for different inlet Reynolds numbers. Generalization of the simulation results resulted in a regime map, which describes different mechanisms of film flow decay. The presented results of numerical simulation are in satisfactory agreement with the experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.