Abstract

Abstract Cold air outbreaks can be identified by the formation of cloud streets downwind from a land-sea boundary, as can be seen in numerous satellite pictures. These cloud streets are caused by horizontal roll vortices which in turn are due to dynamic and convective instability of the planetary boundary layer over sea. The development of these roll vortices is simulated with a numerical model and compared to observations obtained over the Bering Sea. Vertical heat transport is found to be due to turbulent diffusion in the initial stage of a cold air outbreak before organized roll vortices contribute to the heat flux in the higher levels of the boundary layer. The influence of a capping inversion on the dynamic and convective instability is also elucidated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call