Abstract

A lattice Boltzmann method (LBM) with single-relaxation time and on-site boundary condition is used for the simulation of viscous flow in a three-dimensional (3D) lid-driven cavity. Firstly, this algorithm is validated by compared with the benchmark experiments for a standard cavity, and then the results of a cubic cavity with different inflow angles are presented. Steady results presented are for the inflow angle of and, and the Reynolds number is selected as 500. It is found that for viscous flow under moderate Reynolds number, there exists a primary vortex near the center and a secondly vortex at the lower right corner on each slice when, namely in a standard 3D lid-driven cavity, which cant be found when. So it can be thought that the flow pattern in a 3D lid-driven cavity depends not only on the Reynolds number but also the inflow angle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.