Abstract
The paper describes the numerical simulation of the vertical random vibration of train-slab track-bridge interaction system by means of finite element method and pseudoexcitation method. Each vehicle is modeled as four-wheelset mass-spring-damper system with two-layer suspension systems. The rail, slab, and bridge girder are modeled by three-layer elastic Bernoulli-Euler beams connected with each other by spring and damper elements. The equations of motion for the entire system are derived according to energy principle. By regarding rail irregularity as a series of multipoint, different-phase random excitations, the random load vectors of the equations of motion are obtained by pseudoexcitation method. Taking a nine-span simply supported beam bridge traveled by a train consisting of 8 vehicles as an example, the vertical random vibration responses of the system are investigated. Firstly, the suitable number of discrete frequencies of rail irregularity is obtained by numerical experimentations. Secondly, the reliability and efficiency of pseudoexcitation method are verified through comparison with Monte Carlo method. Thirdly, the random vibration characteristics of train-slab track-bridge interaction system are analyzed by pseudoexcitation method. Finally, applying the 3σrule for Gaussian stochastic process, the maximum responses of train-slab track-bridge interaction system with respect to various train speeds are studied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.